A general analytical solution for calculating \(n\)-fold convolution power of exponential-sum distribution functions (Q1855868)

From MaRDI portal





scientific article; zbMATH DE number 1861240
Language Label Description Also known as
English
A general analytical solution for calculating \(n\)-fold convolution power of exponential-sum distribution functions
scientific article; zbMATH DE number 1861240

    Statements

    A general analytical solution for calculating \(n\)-fold convolution power of exponential-sum distribution functions (English)
    0 references
    0 references
    0 references
    28 January 2003
    0 references
    The authors find an explicit formula for the \(n\)-fold convolution \(f*f*\cdots *f\) on \((0,\infty)\), where \(f(t)=\sum_{i=1}^m\alpha_ie^{-\lambda_it}\), and \(\alpha_i,\lambda_i\) are constants.
    0 references
    convolution
    0 references
    Laplace transform
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references