Uniqueness of positive solutions for a class of semilinear elliptic systems (Q1863459)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Uniqueness of positive solutions for a class of semilinear elliptic systems |
scientific article; zbMATH DE number 1879970
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Uniqueness of positive solutions for a class of semilinear elliptic systems |
scientific article; zbMATH DE number 1879970 |
Statements
Uniqueness of positive solutions for a class of semilinear elliptic systems (English)
0 references
11 March 2003
0 references
The author proves existence and uniqueness of positive solutions for the system \[ \begin{cases} \Delta u=-\lambda f(v),\;\Delta v=-\mu g(u) & \text{ in }B,\cr u=v=0 & \text{ on }\partial B,\cr \end{cases} \] where \(B\) is the unit ball in \({\mathbb R}^N;\) \(f,\;g\colon\) \({\mathbb R}^+\to{\mathbb R}^+\) and \(f(x)\sim x^p,\) \(g(x)\sim x^q\) as \(x\to+\infty,\) and \(p,q>0\) with \(pq<1.\)
0 references
systems of semilinear elliptic equations
0 references
positive solutions
0 references
uniqueness
0 references
0 references
0 references
0 references
0 references
0.9977628
0 references
0.99475884
0 references
0.99092215
0 references
0.98779994
0 references
0.9847038
0 references
0.9831732
0 references
0.97887206
0 references
0.9778887
0 references