Lipschitz-type bounds for the map \(A \to|A|\) on \({\mathcal L}({\mathcal H})\) (Q1863534)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Lipschitz-type bounds for the map \(A \to|A|\) on \({\mathcal L}({\mathcal H})\) |
scientific article; zbMATH DE number 1880038
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Lipschitz-type bounds for the map \(A \to|A|\) on \({\mathcal L}({\mathcal H})\) |
scientific article; zbMATH DE number 1880038 |
Statements
Lipschitz-type bounds for the map \(A \to|A|\) on \({\mathcal L}({\mathcal H})\) (English)
0 references
11 March 2003
0 references
Let \(L(H)\) be the algebra of all bounded linear operators on an infinite-dimensional Hilbert space \(H\). For a positive real number \(R\), let \(B_R= \{A\in L(H):\|A\|> R\}\), where \(\|\cdot\|\) denotes the usual operator norm. Denote by \(B^+_R\) the subset of \(B_R\) consisting of all nonnegative operators. In this paper, the authors show the following: (1) If \(0< R< {1\over 16}\), then the square root map \(A\to A^{1/2}\) is Lipschitz continuous on the set \(B^+_R\), that is \(\|A^{1/2}- B^{1/2}\|\leq {\sqrt{8}\over R} \|A-B\|\) for all \(A\), \(B\in B^+_R\). (2) If \(0< R< {1\over 4}\), then the absolute value map \(A\to|A|\) is Lipschitz continuous on the set \(B_R\), that is \(\||A|-|B|\|\leq {4\sqrt{2}\over R} \|A- B\|\) for all \(A\), \(B\in B_R\).
0 references
algebra of bounded linear operators
0 references
Hilbert space
0 references
absolute value map
0 references
0.9243425
0 references
0 references
0.9042911
0 references
0 references
0.8986666
0 references