Estimates of the energy of type-II superconductor (Q1863660)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Estimates of the energy of type-II superconductor |
scientific article; zbMATH DE number 1880144
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Estimates of the energy of type-II superconductor |
scientific article; zbMATH DE number 1880144 |
Statements
Estimates of the energy of type-II superconductor (English)
0 references
11 March 2003
0 references
The authors consider the following Ginzburg-Landau free energy of a type-II superconductor \[ J(u,A)=\frac{1}{2} \int_\Omega |\nabla_A u|^2 +|h-h_{ex}|^2 +\frac{1}{2\varepsilon^2} (a(x)-|u|^2)^2, \] where \(u\) is the order parameter, \(\kappa=1/\varepsilon\) is the Ginzburg-Landau parameter and \(h_{ex}\) is a prescribed magnetic field. In contrast to the original form of the functional where \(a\equiv 1\), \(a\) is a function whose minimas correspond to material impurities. The main result of the paper is an asymptotic expression for the free energy in the mixed phase, in which normal and superconducting phase can coexist. More precisely, they prove \[ J(u_\varepsilon,A_\varepsilon) \thicksim \frac{1}{2} \left(\int_\Omega a(x) dx) h_{ex} \ln \frac{1}{\varepsilon\sqrt{h_{ex}}}(1+ o(1)\right) \quad \text{as } \varepsilon \to 0. \]
0 references
superconductor
0 references
Ginzburg-Landau functional
0 references
minimizer
0 references
0 references
0 references
0 references