Embedding theorem on spaces of homogeneous type (Q1865814)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Embedding theorem on spaces of homogeneous type |
scientific article; zbMATH DE number 1890483
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Embedding theorem on spaces of homogeneous type |
scientific article; zbMATH DE number 1890483 |
Statements
Embedding theorem on spaces of homogeneous type (English)
0 references
23 June 2003
0 references
This paper deals with embedding theorems for Besov and Triebel-Lizorkin spaces on spaces of homogeneous type. The main result shows that if \(-\varepsilon<s_1<s_2<\varepsilon\), then 1) \(\dot B_{p_2}^{s_2,q}\subset \dot B_{p_1}^{s_1,q}\) continuously for \(0<q\leq\infty\), \(\max\{{1\over 1+\varepsilon}, {1\over 1+\varepsilon+s_1}\}<p_1\leq\infty\), \(\max\{{1\over 1+\varepsilon}, {1\over 1+\varepsilon+s_2}\}<p_2\leq\infty\), \(y-\varepsilon<s_2-1/p_2=s_1-1/p_1<\varepsilon\). 2) \(\dot F_{p_2}^{s_2,q_2}\subset \dot F_{p_1}^{s_1,q_1}\) continuously for \(\max\{{1\over 1+\varepsilon}, {1\over 1+\varepsilon+s_1}\}<p_1, q_1<\infty\), \(\max\{{1\over 1+\varepsilon}, {1\over 1+\varepsilon+s_2}\} <p_2, q_2<\infty\), \(y-\varepsilon<s_2-1/p_2=s_1-1/p_1<\varepsilon\). To prove this result they need a discrete Calderón type reproducing formula on spaces of homogeneous type.
0 references
Besov spaces
0 references
Triebel-Lizorkin spaces
0 references
embeddings
0 references
discrete Calderón formula
0 references
spaces of homogeneous type
0 references