Integral transformations by the index of Lommel's function (Q1878599)

From MaRDI portal





scientific article; zbMATH DE number 2099015
Language Label Description Also known as
English
Integral transformations by the index of Lommel's function
scientific article; zbMATH DE number 2099015

    Statements

    Integral transformations by the index of Lommel's function (English)
    0 references
    7 September 2004
    0 references
    Given the integral operator \[ (S_\mu f) (x)=2^{1-\mu}\int^\infty_0 f(\tau)\left| \Gamma\left( \frac{1-\mu+i\tau}{2}\right)\right| ^2 S_{\mu,i\tau}(x) \,d\tau,\;x>0,\;\mu\in \mathbb R,\;| \mu| <1, \] where \(f\) belongs to the Lebesgue space of summable functions, \(\Gamma(z)\) is the Euler gamma-function, \(S_{\mu,i\tau}(x)\) is the kernel Lommel function (a special Bessel type function), where \(\mu\) is a fixed number, one studies its boundedness and inversion properties by using the methods of Fourier, Laplace and Kontorovich-Lebedev transforms theory. An inversion formula is finally proved.
    0 references
    0 references
    Lommel functions
    0 references
    Macdonald function
    0 references
    Mellin transform
    0 references
    Laplace transform
    0 references
    Kontorovich-Lebedev transform
    0 references
    Parseval equality
    0 references
    boundedness
    0 references
    inversion formula
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references