On certain type of preconditioning for KKT-matrices (Q1878767)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On certain type of preconditioning for KKT-matrices |
scientific article; zbMATH DE number 2099555
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On certain type of preconditioning for KKT-matrices |
scientific article; zbMATH DE number 2099555 |
Statements
On certain type of preconditioning for KKT-matrices (English)
0 references
8 September 2004
0 references
The author explains why the matrix \(\mathcal M=\mathcal G^{-1}\mathcal A\), where \[ \mathcal G=\begin{pmatrix} G & B^{T} \\ B & 0 \end{pmatrix} ,\,\mathcal A=\begin{pmatrix} A & B^{T} \\ B & 0 \end{pmatrix} . \] (\(A\) is a square \(n\times n\)-matrix and \(B\) is an \(m\times n\)-matrix) has the eigenvalue 1 of multiplicity at least \(2m\).
0 references
multiple eigenvalue
0 references
0.90502036
0 references
0.89339113
0 references
0.8914548
0 references
0.8860775
0 references
0.88013047
0 references