Oscillations of second-order nonlinear partial difference equations (Q1880828)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Oscillations of second-order nonlinear partial difference equations |
scientific article; zbMATH DE number 2104658
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Oscillations of second-order nonlinear partial difference equations |
scientific article; zbMATH DE number 2104658 |
Statements
Oscillations of second-order nonlinear partial difference equations (English)
0 references
1 October 2004
0 references
The paper deals with the partial difference equation \[ T(\Delta_1,\Delta_2)[c_{mn}T(\Delta_1,\Delta_2)(y_{mn})]+ p_{mn}(y_{m+1,n}+y_{m,n+1})^\nu=0, \] where \(T(\Delta_1,\Delta_2)=\Delta_1+\Delta_2+I\), \(\Delta_1y_{mn}=y_{m+1,n}-y_{mn}\), \(\Delta_2y_{mn}=y_{m,n+1}-y_{mn}\), \(Iy_{mn}=y_{mn}\); \(c_{mn}>0\), \(p_{mn}>0\), \(m\geq0\), \(n\geq0\); \(\nu>0\) is a quotient of odd positive integers. Denote \(r_{mn}=\sum_{i=m}^\infty\sum_{j=n}^\infty1/c_{ij}\) and suppose that \(r_{00}<\infty\). The authors establish the following result: All solutions of the above equation are oscillatory if \(\nu\neq1\) and \(\sum_{i=0}^\infty\sum_{j=0}^\infty(1/2)^{i+j}p_{ij} r_{i+1,j}^\theta=\infty\), where \(\theta=\max\{1,\nu\}\geq1\).
0 references
oscillation
0 references
second-order partial difference equation
0 references
0 references
0.9825276
0 references
0.9755895
0 references
0.9755008
0 references