Spaces of \(N\)-homogeneous polynomials between Fréchet spaces (Q1883360)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Spaces of \(N\)-homogeneous polynomials between Fréchet spaces |
scientific article; zbMATH DE number 2107209
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Spaces of \(N\)-homogeneous polynomials between Fréchet spaces |
scientific article; zbMATH DE number 2107209 |
Statements
Spaces of \(N\)-homogeneous polynomials between Fréchet spaces (English)
0 references
12 October 2004
0 references
The author studies properties of the Nachbin ported topology \(\tau_{\omega}\) on the space \({\mathcal P}(^NE,F)\) of \(N\)-homogeneous polynomials between Fréchet spaces \(E\) and \(F\). To achieve this, the canonical linear topological isomorphism \(({\mathcal P}(^NE,F),\tau_\omega) \cong L_\omega(\bigotimes _{N,s,\pi}E,F)\) is used. Here, the topological space \(L_\omega(G,F)\) is defined as \(L_\omega(G,F)=\text{proj}_n \text{ind}_m L_b(G_m,F_n)\), where \((G_m)\) and \((F_n)\) denote the canonical spectra of \(G\) and \(F\), respectively. This linearization allows to study the barrelledness of \(({\mathcal P}(^NE,F),\tau_\omega)\) in terms of \(\text{Ext}^1(\widehat{\bigotimes}_{N,\pi}E,F)=0\). Using certain permanence properties of Vogt's \((DN)\) and \((\overline{\overline{\Omega}})\) properties for LB-spaces, some necessary and sufficient criteria for the barrelledness of \({\mathcal P}(^NE,F),\tau_\omega)\) are given.
0 references
N-homogeneous polynomials
0 references
Nachbin-ported topology
0 references
functor ext
0 references
barrelledness
0 references