Periodic problems with asymmetric nonlinearities and nonsmooth potentials (Q1883460)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Periodic problems with asymmetric nonlinearities and nonsmooth potentials |
scientific article; zbMATH DE number 2107304
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Periodic problems with asymmetric nonlinearities and nonsmooth potentials |
scientific article; zbMATH DE number 2107304 |
Statements
Periodic problems with asymmetric nonlinearities and nonsmooth potentials (English)
0 references
12 October 2004
0 references
The authors show the existence of a periodic solution to the nonlinear boundary value problem \[ -\big ( | x'(t)| ^{p-2} x'(t) \big )' \in \partial j (t, x(t)),\text{for a.a. }t \in [0, b], \] \[ x(0) = x(b), x'(0) = x'(b), \] \(p > 1\), where \(j(t, \cdot)\) is a nonsmooth locally Lipschitz function and \(\partial j(t, \xi)\) denotes the generalized Clarke subdifferential of \(\varphi\) given by \[ \partial \varphi (x) \equiv \left \{ x^* \in X^*: \langle x^*, h \rangle_X \leq \varphi^0(x; h)\, \forall h \in X \right \} \, \forall x \in X, \] where \(\varphi^0(x; h)\) is the generalized directional derivative of \(\varphi\), \[ \varphi^0(x;h) \equiv \limsup_{x' \to x, t \searrow 0} \frac{\varphi(x'+th) - \varphi(x)}{t}. \]
0 references
Fučik spectrum
0 references
\(p\)-Laplacian
0 references
nonsmooth critical point theory
0 references
linking sets
0 references
locally Lipschitz function
0 references
Clarke subdifferential
0 references
0 references
0.91994035
0 references
0.91901076
0 references
0.91249174
0 references
0.9120598
0 references
0.9105413
0 references
0.9075041
0 references