Multiple solutions of singular impulsive boundary value problems on the half-line (Q1884648)

From MaRDI portal





scientific article; zbMATH DE number 2113802
Language Label Description Also known as
English
Multiple solutions of singular impulsive boundary value problems on the half-line
scientific article; zbMATH DE number 2113802

    Statements

    Multiple solutions of singular impulsive boundary value problems on the half-line (English)
    0 references
    0 references
    0 references
    5 November 2004
    0 references
    By using the fixed-point index theory, the authors prove the existence of multiple solutions for singular impulsive boundary value problems on the half-line, of the form \[ \frac{1}{p(t)}\left(p(t)x'(t)\right)'+f(t,x(t))=0,\quad t\neq t_{k}; \] \[ \Delta x| _{t=t_{k}}=I_{k}(x(t_{k}), \quad k=1,2,\dots; \] \[ \lambda x(0)-\beta\lim_{t\to 0}p(t)x'(t)=a; \] \[ \gamma x(\infty)+\delta\lim_{t\to \infty}p(t)x'(t)=b; \] where \(f:[0,\infty)\times (0,\infty)\to [0,\infty),\) \(I_{k}:[0,\infty)\to [0,\infty), k=1,2,\ldots,\) \(p\in C([0,\infty),{\mathbb R})\cap C^1(0,\infty),\) \(p(t)>0\) for \(t\in (0,\infty),\) \(\Delta x| _{t=t_{k}}=\lim_{\epsilon\to 0+}\left[x(t_{k}+\epsilon)-x(t_{k}-\epsilon)\right],\) \(\lambda, \beta, \gamma, \delta\geq 0\) with \(\beta\gamma+\lambda\delta+\lambda\gamma>0\) and \(a,b\geq 0.\)
    0 references
    boundary value problems
    0 references
    impulses
    0 references
    fixed-point index
    0 references

    Identifiers