Multiple solutions of singular impulsive boundary value problems on the half-line (Q1884648)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Multiple solutions of singular impulsive boundary value problems on the half-line |
scientific article; zbMATH DE number 2113802
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Multiple solutions of singular impulsive boundary value problems on the half-line |
scientific article; zbMATH DE number 2113802 |
Statements
Multiple solutions of singular impulsive boundary value problems on the half-line (English)
0 references
5 November 2004
0 references
By using the fixed-point index theory, the authors prove the existence of multiple solutions for singular impulsive boundary value problems on the half-line, of the form \[ \frac{1}{p(t)}\left(p(t)x'(t)\right)'+f(t,x(t))=0,\quad t\neq t_{k}; \] \[ \Delta x| _{t=t_{k}}=I_{k}(x(t_{k}), \quad k=1,2,\dots; \] \[ \lambda x(0)-\beta\lim_{t\to 0}p(t)x'(t)=a; \] \[ \gamma x(\infty)+\delta\lim_{t\to \infty}p(t)x'(t)=b; \] where \(f:[0,\infty)\times (0,\infty)\to [0,\infty),\) \(I_{k}:[0,\infty)\to [0,\infty), k=1,2,\ldots,\) \(p\in C([0,\infty),{\mathbb R})\cap C^1(0,\infty),\) \(p(t)>0\) for \(t\in (0,\infty),\) \(\Delta x| _{t=t_{k}}=\lim_{\epsilon\to 0+}\left[x(t_{k}+\epsilon)-x(t_{k}-\epsilon)\right],\) \(\lambda, \beta, \gamma, \delta\geq 0\) with \(\beta\gamma+\lambda\delta+\lambda\gamma>0\) and \(a,b\geq 0.\)
0 references
boundary value problems
0 references
impulses
0 references
fixed-point index
0 references
0 references
0 references
0 references