On automorphisms of the symmetrized bidisc (Q1884697)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On automorphisms of the symmetrized bidisc |
scientific article |
Statements
On automorphisms of the symmetrized bidisc (English)
0 references
5 November 2004
0 references
Let \(E\) be the unit disc; let \(\pi\) resp. \(\mathbb{G}_2\) be defined by \[ \pi: \mathbb{C}^2 \to \mathbb{C}^2, \pi (\lambda_1, \lambda_2):= (\lambda_1 + \lambda_2, \lambda_1 \lambda_2), \] \[ \mathbb{G}_2:= \pi (E^2) = \{(\lambda + \lambda_2, \lambda_1 \lambda_2): \lambda_1, \lambda_2 \in E\}. \] The authors give the description of the group \(\Aut(\mathbb{G}_2)\). Namely the following result holds: Theorem. \(\Aut\,\mathbb{G}_2 = \{H_h, h \in \Aut (E)\} \cong \Aut (E)\).
0 references
automorphism
0 references
bidisc
0 references
holomorphic mapping
0 references