On automorphisms of the symmetrized bidisc (Q1884697)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On automorphisms of the symmetrized bidisc
scientific article

    Statements

    On automorphisms of the symmetrized bidisc (English)
    0 references
    0 references
    0 references
    5 November 2004
    0 references
    Let \(E\) be the unit disc; let \(\pi\) resp. \(\mathbb{G}_2\) be defined by \[ \pi: \mathbb{C}^2 \to \mathbb{C}^2, \pi (\lambda_1, \lambda_2):= (\lambda_1 + \lambda_2, \lambda_1 \lambda_2), \] \[ \mathbb{G}_2:= \pi (E^2) = \{(\lambda + \lambda_2, \lambda_1 \lambda_2): \lambda_1, \lambda_2 \in E\}. \] The authors give the description of the group \(\Aut(\mathbb{G}_2)\). Namely the following result holds: Theorem. \(\Aut\,\mathbb{G}_2 = \{H_h, h \in \Aut (E)\} \cong \Aut (E)\).
    0 references
    automorphism
    0 references
    bidisc
    0 references
    holomorphic mapping
    0 references

    Identifiers