The equivariant cohomology ring of regular varieties (Q1885574)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The equivariant cohomology ring of regular varieties
scientific article

    Statements

    The equivariant cohomology ring of regular varieties (English)
    0 references
    0 references
    0 references
    11 November 2004
    0 references
    Let \(\mathfrak{B}\) be the upper-triangular subgroup of \(\text{SL} _{2}\left( \mathbb{C}\right) ,\) \(\mathfrak{T}\) its diagonal torus and \( \mathfrak{U}\) its unipotent radical. Let \(X\) be a smooth complex projective algebraic variety which is acted upon by \(\mathfrak{B}\) such that \(X^{ \mathfrak{U}}\) is a single point \(\mathfrak{o}\). This variety \(X\) is said to be regular. Let \(H_{\mathfrak{T}}^{\ast }\left( X\right) \) denote the equivariant cohomology ring of \(X_{\mathfrak{T}},\) where \(X_{\mathfrak{T} }=\left( X\times \mathcal{E}\right) /\mathfrak{T}\), \(\mathcal{E}\) a contractible space with a free action of \(\mathfrak{T.}\) This paper is a study of this cohomology ring. Let \(\mathcal{A}\) be the vector field on \(X\times \mathbb{A}^{1}\) given by \( \mathcal{A}_{\left( x,v\right) }=2\mathcal{V}_{x}-v\mathcal{W}_{x},\) where \( \mathcal{V}\) and \(\mathcal{W}\) are certain generators of \(\mathfrak{U}\) and \( \mathfrak{T}\) respectively, and let \(\mathcal{Z}\) be the zero scheme of \( \mathcal{A}.\) It is shown that there is an isomorphism of graded algebras \( H_{\mathfrak{T}}^{\ast }\left( X\right) \rightarrow \mathbb{C}\left[ \mathcal{Z}\right] .\) More generally, for \(Y\) a closed \(\mathfrak{B}\)-stable subvariety of \(X\) for which the restriction map \(H^{\ast }\left( X\right) \rightarrow H^{\ast }\left( Y\right) \) is surjective there is a graded isomorphism \(H_{\mathfrak{T}}^{\ast }\left( Y\right) \rightarrow \mathbb{C} \left[ \mathcal{Z}_{Y}\right] ,\) where \(\mathcal{Z}_{Y}\) is the union of the components of \(\mathcal{Z}\) lying in \(Y_{\mathfrak{o}}\cap \mathbb{A}^{1}\), \( Y_{\mathfrak{o}}=\left\{ y\in Y\,| \,\lim_{t\rightarrow \infty }\left( \begin{matrix} t & 0 \\ 0 & t^{-1} \end{matrix} \right) \cdot y=\mathfrak{0}\right\} .\) This isomorphism commutes with the restrictions \(H_{\mathfrak{T}}^{\ast }\left( X\right) \rightarrow H_{ \mathfrak{T}}^{\ast }\left( Y\right) \) and \(\mathbb{C}\left[ \mathcal{Z} \right] \rightarrow \mathbb{C}\left[ \mathcal{Z}_{Y}\right] .\) The authors compute the equivariant cohomology of the Peterson variety. Let \( G\) be a complex semi-simple linear algebraic group with Lie algebra \( \mathfrak{g}\) and \(B\) a Borel subgroup with Lie algebra \(\mathfrak{b}\). For \( M\) a \(B\)-submodule of \(\mathfrak{g}\) containing \(\mathfrak{b}\) we define for each \(x\in \mathfrak{g}\) \(Y_{M}\left( x\right) =\left\{ gB\in G/B\,| \,g^{-1}x\in M\right\} .\) Then the restriction map \(H^{\ast }\left( G/B\right) \rightarrow H^{\ast }\left( Y_{M}\left( e\right) \right) \) is surjective and hence \(H_{\mathfrak{T}}^{\ast }\left( Y_{M}\left( e\right) \right) \cong \mathbb{C}\left[ \mathcal{Z}_{Y_{M}\left( e\right) }\right] .\) This cohomology ring satisfies Poincaré duality, and its Poincaré polynomial is given. Finally, the equivariant push-forward map \(\int_{X}:H_{\mathfrak{T}}^{\ast }\left( X\right) \rightarrow \mathbb{C}\left[ z\right] \) corresponding to the map \(X\rightarrow \)(some point) is given.
    0 references
    0 references
    equivariant cohomology
    0 references
    regular varieties
    0 references
    Peterson variety
    0 references

    Identifiers