Real inversion formula for a Hankel type integral transformation (Q1886884)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Real inversion formula for a Hankel type integral transformation |
scientific article; zbMATH DE number 2116924
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Real inversion formula for a Hankel type integral transformation |
scientific article; zbMATH DE number 2116924 |
Statements
Real inversion formula for a Hankel type integral transformation (English)
0 references
19 November 2004
0 references
The authors propose to extend the Hankel type integral transformation \[ J(y)=y^{1+2v} \int^\infty_0 (y\tau)^{-v}J_\mu (y \tau)j (\tau)\,d\tau\quad (0<y< \infty) \] to certain classes of generalized functions where \(J_\mu(z)\) is the Bessel function of first kind of order \(\mu\). A real inversion formula is shown to be valid when the limiting operation in the formula is understood as weak convergence in the space \(D'(I)\) of Schwartz distributions where \(I\) denotes the interval \(0<\tau< \infty\).
0 references
Hankel transform
0 references
Schwartz distributions
0 references
Bessel function
0 references
real inversion formula
0 references
0.9244542
0 references
0.8980926
0 references
0 references
0.8874383
0 references
0.88237643
0 references
0.8789477
0 references