Invariant and hyperinvariant subspaces of the operator \(J^\alpha\) in the Sobolev spaces \(W^s_p[0,1]\). (Q1889522)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Invariant and hyperinvariant subspaces of the operator \(J^\alpha\) in the Sobolev spaces \(W^s_p[0,1]\). |
scientific article; zbMATH DE number 2121025
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Invariant and hyperinvariant subspaces of the operator \(J^\alpha\) in the Sobolev spaces \(W^s_p[0,1]\). |
scientific article; zbMATH DE number 2121025 |
Statements
Invariant and hyperinvariant subspaces of the operator \(J^\alpha\) in the Sobolev spaces \(W^s_p[0,1]\). (English)
0 references
2 December 2004
0 references
The author describes the lattices \(\operatorname{Lat} J_{s}^{\alpha}\) and \(\operatorname{Hyplat} J_{s}^{\alpha}\) of invariant and hyperinvariant subspaces of the operator \(J_{s}^{\alpha}\) acting on the Sobolev space \(W_{p}^{s}[0,1]\) \((s >0)\) and studies the operator algebra \(\operatorname{Alg} J_{s}^{\alpha}\), the commutant \(\{J_{s}^{\alpha}\}'\), and the bicommutant \(\{ J_{s}^{\alpha} \}''\). For this, he develops the methods of \textit{I. Yu. Domanov} and \textit{M. M. Malamud} [Linear Algebra Appl. 348, 209--230 (2002; Zbl 1006.47003)].
0 references
cyclic subspaces
0 references
cyclic vector
0 references
spectral multiplicity
0 references
unicellular operator
0 references
Volterra operators
0 references
Sobolev spaces
0 references
operator commutant
0 references
invariant subspaces
0 references