An exact sequence related to Adams-Novikov \(E_ 2\)-terms of a cofibering (Q1890898)

From MaRDI portal





scientific article; zbMATH DE number 758150
Language Label Description Also known as
English
An exact sequence related to Adams-Novikov \(E_ 2\)-terms of a cofibering
scientific article; zbMATH DE number 758150

    Statements

    An exact sequence related to Adams-Novikov \(E_ 2\)-terms of a cofibering (English)
    0 references
    0 references
    0 references
    31 July 1995
    0 references
    Let \(L_ n X\) denote the Bousfield localization of a spectrum \(X\) with respect to the Johnson-Wilson spectrum \(E(n)\), and \(\eta_ X: X\to L_ n X\), the localization. Then \textit{D. C. Ravenel} gives the cofibration \(\Sigma^{-n-1} N_{n+1} X\to X@> \eta X>> L_ n X\) in [Am. J. Math. 106, 351-414 (1984; Zbl 0586.55003), Th. 5.10]. Take \(X\) to be the Toda- Smith spectrum \(V(j-1)\). Then the Brown-Peterson homology \(BP_ * (N_{n+1} X)\) of \(N_{n+1} X\) is \(N_ j^{n+1}\) of \textit{H. R. Miller}, \textit{D. C. Ravenel} and \textit{W. S. Wilson}'s sense [Ann Math., II. Ser. 106, 469-516 (1977; Zbl 0374.55022)]. The \(E_ 2\)-terms of the Adams-Novikov spectral sequences converging to \(\pi_ * (N_{n+1} X)\), \(\pi_ * (X)\) and \(\pi_ * (L_ n X)\) are \(\text{Ext}_ \Gamma (A, N_ j^{n+1-j})\), \(\text{Ext}_ \Gamma (A, A/I_ j)\) and \(\text{Ext}_ \Sigma (B, B/I_ j)\), respectively, for the Hopf algebroids \((A, \Gamma)= (BP_ *, BP_ * (BP))\) and \((B, \Sigma)= (E(n)_ *, E(n)_ * (E(n)))\), and for the ideal \(I_ j=(p, v_ 1,\dots, v_{j-1})\). One of the results is the long exact sequence \[ \begin{multlined} \cdots\to\text{Ext}_ \Gamma^ t (A,N_ j^{n+1-j}) \overset \eta{\rightarrow} \text{Ext}_ \Gamma^{t+ n+1} (A,A/I_ j) \overset(\eta_ X)_ {*} {\longrightarrow} \text{Ext}_{\Sigma'}^{t+n +1} (B, B/I_ j)\\ \text{Ext}_ \Gamma^{t+1} (A, N_ j^{n+ 1-j}{)} \cdots ,\end{multlined} \] where \(\eta\) denotes the universal Greek letter map and \((\eta_ X )_ *\), the induced map from the localization. Here the universal Greek letter map is introduced by Miller, Ravenel and Wilson [loc. cit.]. This follows from the main result which claims the long exact sequence involving the universal Greek letter map and is proved algebraically. The result on \(V(j)\) is generalized to spectra \(W_ k(i)\) characterized by \(BP_ * (W_ k (i))= BP_ */ I_{i+1} [t_ 1, \dots, t_ k]\).
    0 references
    universal Greek letter map
    0 references
    Bousfield localization
    0 references
    Johnson-Wilson spectrum
    0 references
    Toda-Smith spectrum
    0 references
    Brown-Peterson homology
    0 references
    Adams-Novikov spectral sequences
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references