Bézout orders and Henselization (Q1891745)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bézout orders and Henselization |
scientific article; zbMATH DE number 763951
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bézout orders and Henselization |
scientific article; zbMATH DE number 763951 |
Statements
Bézout orders and Henselization (English)
0 references
25 July 1995
0 references
Let \(V\) be a valuation ring of a field \(F\), and \(B\) a Bézout maximal \(V\)-order in some central simple \(F\)-algebra \(S\). If \(F_h\), \(V_h\) denotes Henselization, the authors show that \(B_h=V_h\otimes_V B\) is a semi-hereditary maximal \(V_h\)-order in \(S_h=F_h\otimes_F S\). Moreover, they prove that \(B_h\) is Bézout if and only if \(B\) is a Dubrovin valuation ring in \(S\), i.e. if \(B/\text{Rad }B\) is simple artinian, and for any \(s\in S\setminus B\) there are \(b,c\in B\) with \(bs,sc\in B\setminus\text{Rad }B\). Let \(n\), \(t\) be the sizes of the matrix rings \(S_h\) and \(B /\text{Rad }B\), respectively. The authors use the above theorem in order to give an alternative proof of Gräter's result that \(n/t\) coincides with the extension number of \(V\) in \(S\).
0 references
Bézout maximal order
0 references
central simple algebras
0 references
Henselization
0 references
semi- hereditary maximal orders
0 references
Dubrovin valuation rings
0 references
simple Artinian rings
0 references
matrix rings
0 references
extension number
0 references
0 references
0.8609066
0 references
0 references
0 references
0.84154856
0 references
0.84102154
0 references
0.8408015
0 references