Convolution over the spaces \({\mathcal S}'_k\) (Q1892247)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Convolution over the spaces \({\mathcal S}'_k\) |
scientific article; zbMATH DE number 762194
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Convolution over the spaces \({\mathcal S}'_k\) |
scientific article; zbMATH DE number 762194 |
Statements
Convolution over the spaces \({\mathcal S}'_k\) (English)
0 references
8 June 1995
0 references
The authors prove that for \(f\in {\mathcal S}_k'\) and \(g\in {\mathcal S}_k'\), \(k\in \mathbb{Z}\), \(k<0\), the extension from \({\mathcal D}\) to \({\mathcal S}_k\) of the convolution \(f* g\), defined according to the lines of Schwartz, Horváth, and Dierolf and Voigt, agrees with the functional \(f\# g\in {\mathcal S}_k'\), given by \(\langle f(x), \langle g(y), \varphi(x+ y)\rangle \rangle\), \(\varphi\in {\mathcal S}_k\), where \({\mathcal S}_k'\) is the dual of the space \({\mathcal S}_k\) introduced by Horváth.
0 references
convolution
0 references