A note on a result of G. S. Petrov about the weakened 16th Hilbert problem (Q1892545)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on a result of G. S. Petrov about the weakened 16th Hilbert problem |
scientific article; zbMATH DE number 765136
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on a result of G. S. Petrov about the weakened 16th Hilbert problem |
scientific article; zbMATH DE number 765136 |
Statements
A note on a result of G. S. Petrov about the weakened 16th Hilbert problem (English)
0 references
17 January 1996
0 references
\textit{G. S. Petrov} [Funct. Anal. Appl. 22, 72-73 (1988); translation from Funkts. Anal. Prilozh. 22, 83-84 (1988; Zbl 0645.33003)] and \textit{P. Mardesic} [Ergodic Theory Dyn. Syst. 10, 523-529 (1990; Zbl 0706.58054)] have proved that for system \(\dot x = y + \varepsilon P(x,y)\), \(\dot y = 1 - 3x^2 + \varepsilon Q(x,y)\), where \(P(x,y)\) and \(Q(x,y)\) are polynomials of \(x,y\) with degree \(\leq N\), if the first order Melnikov function \(M_1 (h) \not \equiv 0\), then the lowest upper bound \(B(N)\) of the number of limit cycles of the above system is \(N - 1\). We prove that if \(M_1(h) \equiv 0\) and the second order Melnikov function \(M_2(h) \not \equiv 0\), then \[ B(N) = \begin{cases} 2N - 2, \quad & N \text{- even},\\ 2N - 3, \quad & N \text{-odd}. \end{cases} . \]
0 references
Hilbert 16th problem
0 references
upper bound
0 references
number of limit cycles
0 references
second order Melnikov function
0 references
0.90084547
0 references
0.88272727
0 references
0.86460066
0 references