Local and global residue symbols for algebraic function fields (Q1892575)

From MaRDI portal





scientific article; zbMATH DE number 765165
Language Label Description Also known as
English
Local and global residue symbols for algebraic function fields
scientific article; zbMATH DE number 765165

    Statements

    Local and global residue symbols for algebraic function fields (English)
    0 references
    0 references
    19 June 1996
    0 references
    The author defines a global \(M\)-th power residue symbol \((z/w)\) for any finite, separable extension \(K/k_M\) over the Carlitz \(M\)-th cyclotomic function field \(k_M = k (\Lambda_M)\), and defines a local norm residue symbol \((\alpha, \beta)_P\) for any local field \(E \supset k_M\). He then proves some basic properties of the two symbols analogous to the number field case, including the additivity, equation connecting them, and the continuity of the local one. The definitions are by \((z/Q) \equiv z^{(NQ - 1)/M} \pmod {QO_Q}\) and \((\alpha, \beta)_P = [\beta, E] (\gamma) - \gamma\) where \(M \in \mathbb{F}_q [x]\), \(k = \mathbb{F}_q (x)\), \(z,w \in K\), \(Q\) is a prime of \(K\), \(N\) the norm map from \(K\) to \(k\), \(O_Q\) the valuation ring of \(Q\), \(\alpha, \beta \text{(unit)} \in E\), \(P\) the prime of \(E\), \([\;,E]\) the local Artin map, and \(\gamma\) is algebraic over \(E\) with \(\gamma^M = \alpha\). The notations are from \textit{D. Goss} [J. Algebra 81, 107-149 (1983; Zbl 0516.12010)].
    0 references
    algebraic function field
    0 references
    cyclotomic extension
    0 references
    residue symbol
    0 references
    cyclotomic function field
    0 references
    Artin map
    0 references
    0 references

    Identifiers