Prime non-Lie modules for Malcev superalgebras (Q1892826)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Prime non-Lie modules for Malcev superalgebras |
scientific article; zbMATH DE number 767670
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Prime non-Lie modules for Malcev superalgebras |
scientific article; zbMATH DE number 767670 |
Statements
Prime non-Lie modules for Malcev superalgebras (English)
0 references
26 June 1995
0 references
A bimodule \(V\) for a superalgebra \(A\) is prime if any two of its nonzero submodules have a nonzero intersection and no nonzero submodule is annihilated by a nonzero ideal of \(A\). The authors determine all prime bimodules for Malcev algebras modulo Lie theory. In fact, the work is done in the setting of Malcev superalgebras.
0 references
prime bimodules
0 references
Malcev algebras
0 references
Malcev superalgebras
0 references
0 references
0.94096535
0 references
0.9157382
0 references
0.9098258
0 references
0.9042697
0 references
0.89382964
0 references