The rate of error growth in Hamiltonian-conserving integrators (Q1894289)

From MaRDI portal





scientific article; zbMATH DE number 777684
Language Label Description Also known as
English
The rate of error growth in Hamiltonian-conserving integrators
scientific article; zbMATH DE number 777684

    Statements

    The rate of error growth in Hamiltonian-conserving integrators (English)
    0 references
    0 references
    0 references
    10 August 1995
    0 references
    Hamiltonian-conserving numerical schemes are considered. It is shown that the rate of error-growth is at most linear in time when such methods are applied to problems whose period is uniquely determined by the value of the Hamiltonian. Pointing out that the rate of error growth for symplectic integrators is also asymptotically linear, the authors conclude that the Hamiltonian-conserving schemes are competitive in this respect. However, the relative merits of these two types of integrators should be judged from various aspects.
    0 references
    0 references
    Hamiltonian-conserving integrators
    0 references
    error bound
    0 references
    Hamiltonian
    0 references
    rate of error growth
    0 references
    symplectic integrators
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references