The first eigenvalue of the Dirac operator on compact Kähler manifolds (Q1894864)

From MaRDI portal





scientific article; zbMATH DE number 778992
Language Label Description Also known as
English
The first eigenvalue of the Dirac operator on compact Kähler manifolds
scientific article; zbMATH DE number 778992

    Statements

    The first eigenvalue of the Dirac operator on compact Kähler manifolds (English)
    0 references
    0 references
    22 August 1995
    0 references
    The first eigenvalue \(\lambda_1\) of the Dirac operator on a compact Kähler spin manifold of odd complex dimension \(m\) satisfies \(\lambda^2_1 \geq m^{-1} (m + 1){s\over 4}\). Here \(s\) is the lower bound of the scalar curvature. This estimate is due to \textit{K.-D. Kirchberg} [Ann. Global Anal. Geom. 4, 291-325 (1986; Zbl 0629.53058)]. The author describes the manifolds for which equality holds in this estimate. For \(m = 4l+ 1\) this is the complex projective space and for \(m = 4l + 3\) these are twistor spaces of quaternionic Kähler manifolds of positive scalar curvature.
    0 references
    first eigenvalue
    0 references
    Dirac operator
    0 references
    Kähler spin manifold
    0 references

    Identifiers