On the continuity space of product measure (Q1896944)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the continuity space of product measure |
scientific article; zbMATH DE number 795606
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the continuity space of product measure |
scientific article; zbMATH DE number 795606 |
Statements
On the continuity space of product measure (English)
0 references
12 September 1995
0 references
``Theorem 1: Let \(\mu\) be a nonzero Radon measure in a linear vector space \(X\). Then, with respect to the metric \(\rho(a, b)= \sup_{|t|\leq 1} |\mu_{ta}- \mu_{tb}|\), \(C(\mu)\) is a complete metrizable topological vector space isomorphic to a closed subspace of some space \(L^0(\Omega, A, P)\).'' Als (einzige) Erklärung der benutzten Begriffe wird vorangestellt: ``Let \(\mu\) be a Radon measure in a linear vector space \(X\), \(\mu_h(A)= \mu(A+ h)\) \((h\in X)\). The measure \(\mu\) is continuous in the direction of a vector \(h\in X\) \((h\in C(\mu))\), if \(\lim_{t\to 0} |\mu_{th}- \mu|= 0\).'' In Theorem 1 werden verschiedene Charakterisierungen von \(C(\mu)\) für den Fall angegeben, daß \(\mu= \prod^\infty_{n= 1} \mu_n\) ein Produkt von Wahrscheinlichkeitsmaßen \(\mu_n\) auf \(\mathbb{R}\) ist, die stetig bezüglich des Lebesguemaßes sind.
0 references
product measures
0 references
quasi-invariance
0 references
nonzero Radon measure
0 references
linear vector space
0 references