A borderline random Fourier series (Q1897161)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A borderline random Fourier series |
scientific article; zbMATH DE number 796520
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A borderline random Fourier series |
scientific article; zbMATH DE number 796520 |
Statements
A borderline random Fourier series (English)
0 references
15 January 1996
0 references
Let \((X_n)_{n \geq 1}\) be a mean zero sequence of i.i.d. real-valued random variables. It is shown that the random Fourier series \(\sum_{n \geq 1} n^{-1} X_n \exp (2i \pi nt)\) converges uniformly a.s. if and only if \(E(|X |\log \log (\max (e^e, |X |))) < \infty\).
0 references
random Fourier series
0 references