On the twelfth power moment of the Riemann zeta-function near the critical line (Q1901217)

From MaRDI portal





scientific article; zbMATH DE number 813154
Language Label Description Also known as
English
On the twelfth power moment of the Riemann zeta-function near the critical line
scientific article; zbMATH DE number 813154

    Statements

    On the twelfth power moment of the Riemann zeta-function near the critical line (English)
    0 references
    0 references
    7 November 1995
    0 references
    \textit{D. R. Heath Brown} [Q. J. Math., II. Ser. 29, 443-462 (1978; Zbl 0394.10020)]\ proved that \[ \int_0^T |\zeta \bigl( {\textstyle {1\over 2}}+ it) |^{12} dt\ll T^2\log^{17} T. \] The author now proves the corresponding result near the critical line: \[ \int_0^T |\zeta (\sigma +it) |^{12} dt\ll T^2 \beta_T^{16} \log T, \quad \sigma_T= {\textstyle {1\over 2}+ {1\over \ell_T}}, \quad \delta_T= {\textstyle {2\over \ell_T}}, \quad \beta_T= \min (\log T, \delta_T^{-1}), \] where \(\ell_T> 0\) and \(\ell_T\) monotonically tends to \(\infty\) as \(T\to \infty\) (the last condition is missing in the English translation). The above bound is derived from a large value estimate for \(|\zeta (\sigma_T+ it)|\), similarly as in the work of D. R. Heath-Brown (op. cit.). The method used in the proof is that of \textit{A. Laurinčikas} [New Trends Probab. Stat. 2, 335-354 (1992; Zbl 0774.11048), and Lith. Math. J. 33, No. 3, 234-242 (1993); translation from Liet. Mat. Rink. 33, No. 3, 302-313 (1993)].
    0 references
    Riemann zeta-function
    0 references
    twelfth power moment
    0 references
    critical line
    0 references

    Identifiers