Hayman direction of meromorphic functions (Q1902048)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hayman direction of meromorphic functions |
scientific article; zbMATH DE number 815796
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hayman direction of meromorphic functions |
scientific article; zbMATH DE number 815796 |
Statements
Hayman direction of meromorphic functions (English)
0 references
7 July 1996
0 references
If one denotes by \(n (r, \theta - \varepsilon, \theta + \varepsilon, g = a)\) the number of \(a\)-points of the meromorphic function \(g\) in the domain \(\{z \in \mathbb{C} \mid |z |< r\) and \(\theta - \varepsilon < \arg z < \theta + \varepsilon\}\) then it is proved that for a meromorphic function \(f\) with \[ \limsup_{r \to \infty} {T(r,f) \over (\log r)^2} = \infty \] there is \(\theta \in [0,2 \pi]\) such that for every \(\varepsilon > 0\) and positive integer \(\ell\)\ \ \(\lim_{r \to \infty} [n(r, \theta - \varepsilon, \theta + \varepsilon, f = a) + n (r, \theta - \varepsilon, \theta + \varepsilon, f^{(\ell)} = b)] = \infty\) for all \((a,b) \in \mathbb{C} \times (\mathbb{C} \backslash \{0\})\).
0 references
value distribution theory
0 references
Hayman-directions
0 references
meromorphic function
0 references