Some effective estimation in the theory of the Hurwitz-zeta function (Q1902336)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some effective estimation in the theory of the Hurwitz-zeta function |
scientific article; zbMATH DE number 818444
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some effective estimation in the theory of the Hurwitz-zeta function |
scientific article; zbMATH DE number 818444 |
Statements
Some effective estimation in the theory of the Hurwitz-zeta function (English)
0 references
11 September 1996
0 references
Der Verf. beweist mit Hilfe der bekannten Vinogradovschen Abschätzungsmethode die folgende effektive Abschätzung der Partialsummen von \(\zeta(s, a)\) [vgl. \textit{A. Walfisz}, Weylsche Exponentialsummen in der neueren Zahlentheorie, Math. Forschungsber. 16 (1963; Zbl 0146.06003), Satz 2, S. 57]. Es sei \(0< \alpha\leq 1\), \(s= \sigma+ it\), \(N,M\in \mathbb{N}\), \(N< M\leq 2N\) und \(\exp(\log^{2/3} t)< N\leq t^{1/1000}\). Mit \(\gamma:= 2,003\), \(\delta:= (2309, 525)^{-1}\) gilt dann für \(\alpha> 0\), \(t> \exp(2\cdot 10^9)\), \[ \Biggl|\sum_{N< n\leq M} (n+ \alpha)^{- s}\Biggr|\leq \gamma N^{1- \sigma- \delta(\log N/\log t)^2}. \]
0 references
Hurwitz-zeta function
0 references
effective bounds on partial sums
0 references
Vinogradov estimation method
0 references