A combinatorial proof of the equivalence of the classical and combinatorial definitions of Schur function (Q1903010)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A combinatorial proof of the equivalence of the classical and combinatorial definitions of Schur function |
scientific article; zbMATH DE number 823498
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A combinatorial proof of the equivalence of the classical and combinatorial definitions of Schur function |
scientific article; zbMATH DE number 823498 |
Statements
A combinatorial proof of the equivalence of the classical and combinatorial definitions of Schur function (English)
0 references
9 December 1996
0 references
The authors give a combinatorial proof that \(\prod x_i^{n + 1 - i} \sum \omega (T)\) equals \[ \left( \sum_{\sigma \in S_n} \text{sgn} (\sigma) \prod x_{\sigma_i}^{\lambda_i + n + 1 - i} \right) \times \prod_{i < j} \left( 1 + {x_j \over x_i} + \left( {x_j \over x_i} \right)^2 +\cdots \right), \] where the sum on \(T\) is over all column strict tableaux of shape \(\lambda\) with the usual weight.
0 references
equivalence
0 references
Schur function
0 references
tableaux
0 references
0.9774771
0 references
0.92010814
0 references
0.9026729
0 references
0.8828082
0 references
0.87731606
0 references