Factorization of rank two theta functions. II: Proof of the Verlinde formula (Q1906503)

From MaRDI portal





scientific article; zbMATH DE number 840212
Language Label Description Also known as
English
Factorization of rank two theta functions. II: Proof of the Verlinde formula
scientific article; zbMATH DE number 840212

    Statements

    Factorization of rank two theta functions. II: Proof of the Verlinde formula (English)
    0 references
    25 February 1996
    0 references
    The authors extend the arguments used previously in ibid. 297, No. 3, 417-466 (1993; Zbl 0788.32012) to get a general result concerning the factorization of holomorphic sections of line bundles on the moduli spaces of rank two parabolic bundles on Riemann surfaces. The main result is the proof of the Verlinde formula for \(SU(2)\): For all \(g \geq 2\) and all integers \(n_1, \dots, n_m\), one has the equality \(D^{g,k}_{n_1, \dots, n_m} = N^{g, k}_{n_1, \dots, n_m}\), where \[ D^{g,k}_{n_1, \dots, n_m} = \begin{cases} \dim \Hom_{\mathcal G} (V_{n_1} \otimes \cdots \otimes V_{n_m}, H^0 ({\mathcal A}, \Delta^{\oplus k}), \quad & \text{if } n_1, \dots, n_m \geq 0 \\ 0, \quad & \text{otherwise} \end{cases} \] \[ \text{and } N^{g,k}_{n_1, \dots, n_m} = \sum^k_{l = 0} (S_{l0})^{2 - 2g} {S_{ln_1} \over S_{l0}} \cdots {S_{ln_m} \over S_{l0}}. \]
    0 references
    moduli space
    0 references
    factorization of holomorphic sections of line bundles
    0 references
    rank two parabolic bundles
    0 references
    Riemann surfaces
    0 references
    Verlinde formula
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references