Factorization of rank two theta functions. II: Proof of the Verlinde formula (Q1906503)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Factorization of rank two theta functions. II: Proof of the Verlinde formula |
scientific article; zbMATH DE number 840212
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Factorization of rank two theta functions. II: Proof of the Verlinde formula |
scientific article; zbMATH DE number 840212 |
Statements
Factorization of rank two theta functions. II: Proof of the Verlinde formula (English)
0 references
25 February 1996
0 references
The authors extend the arguments used previously in ibid. 297, No. 3, 417-466 (1993; Zbl 0788.32012) to get a general result concerning the factorization of holomorphic sections of line bundles on the moduli spaces of rank two parabolic bundles on Riemann surfaces. The main result is the proof of the Verlinde formula for \(SU(2)\): For all \(g \geq 2\) and all integers \(n_1, \dots, n_m\), one has the equality \(D^{g,k}_{n_1, \dots, n_m} = N^{g, k}_{n_1, \dots, n_m}\), where \[ D^{g,k}_{n_1, \dots, n_m} = \begin{cases} \dim \Hom_{\mathcal G} (V_{n_1} \otimes \cdots \otimes V_{n_m}, H^0 ({\mathcal A}, \Delta^{\oplus k}), \quad & \text{if } n_1, \dots, n_m \geq 0 \\ 0, \quad & \text{otherwise} \end{cases} \] \[ \text{and } N^{g,k}_{n_1, \dots, n_m} = \sum^k_{l = 0} (S_{l0})^{2 - 2g} {S_{ln_1} \over S_{l0}} \cdots {S_{ln_m} \over S_{l0}}. \]
0 references
moduli space
0 references
factorization of holomorphic sections of line bundles
0 references
rank two parabolic bundles
0 references
Riemann surfaces
0 references
Verlinde formula
0 references
0 references
0.9504496
0 references
0.8870902
0 references
0.8861039
0 references
0.8619522
0 references
0.8514167
0 references
0.8490494
0 references
0.8483024
0 references