A counterexample to the \(L^ 2\) estimate \(\| XYu \|\leq C(\| X^ k u\|+ \| Y^ k u\|+ \| u\|)\) (Q1906506)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A counterexample to the \(L^ 2\) estimate \(\| XYu \|\leq C(\| X^ k u\|+ \| Y^ k u\|+ \| u\|)\) |
scientific article; zbMATH DE number 840215
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A counterexample to the \(L^ 2\) estimate \(\| XYu \|\leq C(\| X^ k u\|+ \| Y^ k u\|+ \| u\|)\) |
scientific article; zbMATH DE number 840215 |
Statements
A counterexample to the \(L^ 2\) estimate \(\| XYu \|\leq C(\| X^ k u\|+ \| Y^ k u\|+ \| u\|)\) (English)
0 references
1 February 1996
0 references
An example of two \(C^\infty\) vector fields \(X\), \(Y\) on \(\mathbb{R}^2\) is constructed with the property that for any natural number \(k\) none of the following estimates holds. \[ |XY u|\leq C(|X^k u|+ |Y^k u|+ |u|),\;|(XY+ YX) u|\leq C(|X^k u|+ |Y^k u|+ |u|), \] \[ |[X, Y] u|\leq C(|X^k u|+ |Y^k u|+|u|). \] It is shown that the above estimates fail not only in \(L^2\), but in any \(L^p\), \(1\leq p\leq \infty\) and cannot be saved by adding terms of the form \(|Y^k X^\ell u|\) to the right-hand side. Finally, in the given example the operator \(X^2+ Y^2\) is hypoelliptic. A small modification of the example produces two vector fields in \(\mathbb{R}^3\) generating a pseudoconvex CR-structure.
0 references
\(L^ 2\) estimate
0 references
pseudoconvex CR-structure
0 references
0 references
0.85104144
0 references
0.8468013
0 references
0.84540564
0 references
0.8447535
0 references
0.83868366
0 references
0 references
0.8343585
0 references
0.8338858
0 references