Anisotropic equations in \(L^ 1\) (Q1906546)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Anisotropic equations in \(L^ 1\) |
scientific article; zbMATH DE number 840310
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Anisotropic equations in \(L^ 1\) |
scientific article; zbMATH DE number 840310 |
Statements
Anisotropic equations in \(L^ 1\) (English)
0 references
9 June 1996
0 references
Let \(\mu\) be a bounded Radon measure on \(\Omega\). The authors prove existence of a solution of the anisotropic quasilinear Dirichlet problem \[ - \sum^n_{i= 1} {\partial\over \partial x_i} \Biggl(\Biggl|{\partial u\over \partial x_i}\Biggr|^{p_i- 2} {\partial u\over \partial x_i}\Biggr)= \mu \quad \text{in }\Omega,\quad u= 0\quad \text{on }\partial \Omega, \] where \(p_i> 1\), in the anisotropic Sobolev space \(W^{1,q_i}_0= \{v\in W^{1,1}_0\mid \partial v/\partial x_i\in L^{q_i}, i= 1,\dots, n\}\), where \(q_i> 1\) depend on \(p_i\).
0 references
bounded Radon measure
0 references
existence
0 references
anisotropic Sobolev space
0 references
0 references
0.9304964
0 references
0.92987716
0 references
0.92867404
0 references
0.92802155
0 references
0 references
0.9274833
0 references
0.9262488
0 references