A quantitative characterization of finite simple groups (Q1906605)

From MaRDI portal





scientific article; zbMATH DE number 840369
Language Label Description Also known as
English
A quantitative characterization of finite simple groups
scientific article; zbMATH DE number 840369

    Statements

    A quantitative characterization of finite simple groups (English)
    0 references
    0 references
    21 February 1996
    0 references
    For a finite group \(G\) let \(i(G)= \{|G:M|\mid M\) maximal\} be the set of indexes of maximal subgroups. The author proves in this note: Theorem. Let \(A\) be an alternating group and \(B\) a nonabelian, finite, simple group with \(i(B)\subseteq i(A)\), then \(A\simeq B\). The proof of this result uses the classification of finite simple groups. The author conjectures that if \(M\), \(N\) are nonabelian simple groups with \(|N|\mid|M|\) and \(i(N) \subseteq i(M)\) then \(M\simeq N\) or \(N\simeq \text{PSL} (2,11)\) and \(M\simeq M_{11}\). Related results from \textit{D. Wang} and the author are [Acta Math. Sin. 35, No. 2, 273-278 (1992; Zbl 0794.20030), 37, No. 1, 108-115 (1994; Zbl 0826.20021), 37, No. 5, 601-606 (1994; Zbl 0813.20053) and Northeast. Math. J. 10, No. 1, 81-86 (1994; Zbl 0830.20043)].
    0 references
    finite groups
    0 references
    indexes of maximal subgroups
    0 references
    alternating groups
    0 references
    nonabelian finite simple groups
    0 references
    classification of finite simple groups
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references