Strong uniqueness for Schrödinger operators with Kato potentials (Q1908116)

From MaRDI portal





scientific article; zbMATH DE number 850622
Language Label Description Also known as
English
Strong uniqueness for Schrödinger operators with Kato potentials
scientific article; zbMATH DE number 850622

    Statements

    Strong uniqueness for Schrödinger operators with Kato potentials (English)
    0 references
    0 references
    12 August 1996
    0 references
    The author proves a strong unique continuation result for Schrödinger inequalities with radial Kato potential, i.e. if \(u \in H^1_{\text{loc}} (B(x_0, R_0))\), \(|\Delta u |\leq |Vu |\), where \(V\) is a radial potential such that \[ \lim_{r \to 0} \sup_{x \in B (x_0, R_0)} \int_{|x - y |< r} {\bigl |V(y) \bigr |\over |x - y |^{d - 2}} dy = 0 \;\text{and} \int_{|x - x_0 |< r} |u |^2 dx = O(r^N), \;r \to 0, \;\forall N > 0, \] then \(u\) should be zero.
    0 references
    strong unique continuation
    0 references
    Schrödinger inequalities
    0 references

    Identifiers