Strong uniqueness for Schrödinger operators with Kato potentials (Q1908116)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Strong uniqueness for Schrödinger operators with Kato potentials |
scientific article; zbMATH DE number 850622
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Strong uniqueness for Schrödinger operators with Kato potentials |
scientific article; zbMATH DE number 850622 |
Statements
Strong uniqueness for Schrödinger operators with Kato potentials (English)
0 references
12 August 1996
0 references
The author proves a strong unique continuation result for Schrödinger inequalities with radial Kato potential, i.e. if \(u \in H^1_{\text{loc}} (B(x_0, R_0))\), \(|\Delta u |\leq |Vu |\), where \(V\) is a radial potential such that \[ \lim_{r \to 0} \sup_{x \in B (x_0, R_0)} \int_{|x - y |< r} {\bigl |V(y) \bigr |\over |x - y |^{d - 2}} dy = 0 \;\text{and} \int_{|x - x_0 |< r} |u |^2 dx = O(r^N), \;r \to 0, \;\forall N > 0, \] then \(u\) should be zero.
0 references
strong unique continuation
0 references
Schrödinger inequalities
0 references