The local theta correspondence of irreducible type 2 dual reductive pairs (Q1908314)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The local theta correspondence of irreducible type 2 dual reductive pairs |
scientific article; zbMATH DE number 847739
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The local theta correspondence of irreducible type 2 dual reductive pairs |
scientific article; zbMATH DE number 847739 |
Statements
The local theta correspondence of irreducible type 2 dual reductive pairs (English)
0 references
18 March 1996
0 references
Let \(F\) be a non-archimedean local field. The author considers the dual reductive pair \((\text{GL}_n\), \(\text{GL}_{n+1})\) over \(F\). The purpose of this paper is to determine the image of the theta correspondence from \(\text{GL}_n\) to \(\text{GL}_{n+1}\). The author gives a result in this direction which partially describes the image in terms of the Bernstein-Zelevinsky classification of representations of the general linear groups. The proof involves a delicate local analysis of the Weil representation in this case and in particular makes essential use of the local theory of zeta functions.
0 references
dual reductive pair
0 references
image of the theta correspondence
0 references
Bernstein-Zelevinsky classification of representations
0 references
Weil representation
0 references
0 references
0 references
0.93298787
0 references
0.89103407
0 references
0 references
0 references
0.8852947
0 references
0.88149035
0 references
0.87512016
0 references
0.87383044
0 references
0.8722033
0 references