Harmonic measures for elliptic operators of nondivergence form (Q1908915)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Harmonic measures for elliptic operators of nondivergence form |
scientific article; zbMATH DE number 852866
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Harmonic measures for elliptic operators of nondivergence form |
scientific article; zbMATH DE number 852866 |
Statements
Harmonic measures for elliptic operators of nondivergence form (English)
0 references
16 September 1996
0 references
The following theorem is proved: For each \(\alpha\) in \((n - 2, n - 1]\), there exists a uniformly elliptic operator of nondivergence form in \(\mathbb{R}^n_+\) such that the support of its harmonic measure lies on a set of Hausdorff dimension \(\leq \alpha\).
0 references
uniformly elliptic operator of nondivergence form
0 references
harmonic measure
0 references
Hausdorff dimension
0 references