Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces (Q1909995)

From MaRDI portal





scientific article; zbMATH DE number 861759
Language Label Description Also known as
English
Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces
scientific article; zbMATH DE number 861759

    Statements

    Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces (English)
    0 references
    0 references
    3 November 1996
    0 references
    The author considers the existence of minimal and maximal solutions for the periodic boundary value problems of second order impulsive integro-differential equations of mixed type in Banach spaces \[ - u'' = f(t,u,Tu,Su) \text{ for } t\neq t_k,\;\Delta u |_{t = t_k} = I_k \bigl( u(t_k) \bigr),\;\Delta u' |_{t = t_k} = \overline I_k \bigl( u(t_k) \bigr)\;(k = 1,2, \dots, m) \] \(u(0) = u(2 \pi)\), \(u'(0) = u'(2 \pi)\), where \(f \in C[J \times E^3;E]\), \(J = [0, 2 \pi]\), \(E\) is a real Banach space, \(0 < t_1 < \cdots < t_m < 2 \pi\), \(I_k \in C [E;E]\), \(\overline I_k \in C[E;E]\), \(\Delta u |_{t = t_k} = u(t^+_k) - u(t^-_k)\), \(\Delta u' |_{t = t_k} = u'(t^+_k) - u'(t^-_k)\) \((k = 1,2, \dots, m)\). The operators \(T,S\) are given by \[ Tu (t) = \int^t_0 k(t,s) u(s) ds, \quad Su (t) = \int^{2 \pi}_0k_1 (t,s) u(s)ds \] with \(k \in C[D,R]\), \(D = \{(t,s) \in \mathbb{R}^2 : 0 \leq s \leq t \leq 2 \pi\}\), \(k_1 \in C[J \times J; \mathbb{R}]\). The method of proof is based on the monotone iterative technique and cone theory.
    0 references
    nonlinear
    0 references
    minimal and maximal solutions
    0 references
    periodic boundary value problems
    0 references
    second order impulsive integro-differential equations
    0 references
    Banach spaces
    0 references
    monotone iterative technique
    0 references
    cone theory
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references