Gevrey regularity in the sense of Beurling or Roumieu for the \(\overline\partial\) operator in unbounded domains (Q1910179)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Gevrey regularity in the sense of Beurling or Roumieu for the \(\overline\partial\) operator in unbounded domains |
scientific article; zbMATH DE number 861931
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Gevrey regularity in the sense of Beurling or Roumieu for the \(\overline\partial\) operator in unbounded domains |
scientific article; zbMATH DE number 861931 |
Statements
Gevrey regularity in the sense of Beurling or Roumieu for the \(\overline\partial\) operator in unbounded domains (English)
0 references
22 August 1996
0 references
On résoud l'équation \(\overline \partial\) dans les classes de Gevrey-Roumieu et Gevrey-Beurling sur certains ouverts pseudoconvexes non bornés de \(\mathbb{C}^n\), comprenant, par exemple, les ouverts à frontière \({\mathcal C}^2\) strictement pseudoconvexe oú les domaines modèles \(\{(z,w) \in \mathbb{C}^2 : \text{Re} w + |z |^{2k} < 0\}\). On utilise pour cela un procédé d'exhaustion/approximation de type Mittag-Leffler dans les classes considérées, joint à un raffinement de résultats établis par Chaumat et Chollet dans le cas de domaines bornés.
0 references
Gevrey regularity
0 references
unbounded domains
0 references
\(\overline \partial\)-operator
0 references
ultradifferentiable classes
0 references
holomorphic convexity
0 references