On mean convergence of Hermite-Fejér interpolation (Q1911359)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On mean convergence of Hermite-Fejér interpolation |
scientific article; zbMATH DE number 868508
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On mean convergence of Hermite-Fejér interpolation |
scientific article; zbMATH DE number 868508 |
Statements
On mean convergence of Hermite-Fejér interpolation (English)
0 references
21 April 1996
0 references
If \(H_n (f, x)\) is the Hermite-Fejér interpolation polynomial of the function \(f\) based on the zeros of the Chebyshev polynomial and if \[ |f|_{w,2}= \Biggl( \int^1_{-1} {1\over {\sqrt {1-x^2}}} |f(x) |^2 dx \Biggr)^{1/2} \] then for each polynomial \(f\neq \text{const.}\), \(|H_n (f, x)- f(x) |_{w,2} \sim 1/n\).
0 references
Hermite-Fejér interpolation
0 references
0 references