Iwasawa invariants of real abelian number fields (Q1912276)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Iwasawa invariants of real abelian number fields |
scientific article; zbMATH DE number 874185
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Iwasawa invariants of real abelian number fields |
scientific article; zbMATH DE number 874185 |
Statements
Iwasawa invariants of real abelian number fields (English)
0 references
25 November 1996
0 references
In this paper the author presents a criterion for the vanishing of the Iwasawa \(\lambda\)-invariant for the \(\mathbb{Z}_p\)-extension of a real abelian number field \(k\), where \(p\) is an odd prime. Using this criterion the following theorem (5.1) is proved: ``For \(m = 295, 397, 745\), or 1738, the \(\lambda\)-invariant \(\lambda\) of the cyclotomic \(\mathbb{Z}_3\)-extension of \(\mathbb{Q} (\sqrt m)\) is zero''.
0 references
Iwasawa invariants
0 references
\(\mathbb{Z}_ p\)-extension
0 references
real abelian number field
0 references