On the zeta function values \(\zeta (2k+1)\), \(k=1, 2, \dots\) (Q1912630)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the zeta function values \(\zeta (2k+1)\), \(k=1, 2, \dots\) |
scientific article; zbMATH DE number 878068
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the zeta function values \(\zeta (2k+1)\), \(k=1, 2, \dots\) |
scientific article; zbMATH DE number 878068 |
Statements
On the zeta function values \(\zeta (2k+1)\), \(k=1, 2, \dots\) (English)
0 references
4 December 1996
0 references
Series for the Riemann zeta function \(\zeta (s)\) at the odd integers \(s \geq 3\) are derived by integrating the logarithm of the infinite product representation of \(t \cos t\). The simplest result is \[ \zeta (3) = {\pi^2 \over 14} \left\{ {3 \over 2} + \log {4 \over \pi} - 4 \sum_{m = 1}^\infty {(2^{2m - 1} - 1) \zeta (2m) \over 2^{4m} m(2m + 1) (2m + 2)} \right\}. \]
0 references
odd arguments
0 references
Riemann zeta function
0 references