On the zeta function values \(\zeta (2k+1)\), \(k=1, 2, \dots\) (Q1912630)

From MaRDI portal





scientific article; zbMATH DE number 878068
Language Label Description Also known as
English
On the zeta function values \(\zeta (2k+1)\), \(k=1, 2, \dots\)
scientific article; zbMATH DE number 878068

    Statements

    On the zeta function values \(\zeta (2k+1)\), \(k=1, 2, \dots\) (English)
    0 references
    4 December 1996
    0 references
    Series for the Riemann zeta function \(\zeta (s)\) at the odd integers \(s \geq 3\) are derived by integrating the logarithm of the infinite product representation of \(t \cos t\). The simplest result is \[ \zeta (3) = {\pi^2 \over 14} \left\{ {3 \over 2} + \log {4 \over \pi} - 4 \sum_{m = 1}^\infty {(2^{2m - 1} - 1) \zeta (2m) \over 2^{4m} m(2m + 1) (2m + 2)} \right\}. \]
    0 references
    odd arguments
    0 references
    Riemann zeta function
    0 references
    0 references

    Identifiers