Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space (Q1912669)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space |
scientific article; zbMATH DE number 878106
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space |
scientific article; zbMATH DE number 878106 |
Statements
Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space (English)
0 references
7 June 1998
0 references
The Jordan-von Neumann theorem proved in 1935 says that a normed space \(X\) for which the parallelogram identity holds \[ |x+y|^2+|x-y|^2= 2|x|^2+2|y|^2, \qquad \forall x,y\in X \] can be made into an inner product space \((X,\langle ,\rangle)\) with \(\langle x,x\rangle=|x|^2\). In this paper the author works with proper \(H^*\)-algebras \(A\). For a left module \(X\) over \(A\) he defines a generalized normed space \((X,N)\), where \(N:X\to A\) is a norm-like mapping. The main theorem says that if \((X,N)\) is a normed \(A\)-module over \(A\), then \(N\) satisfies the parallelogram identity if and only if \(X\) is a Saworotnow's pre-Hilbert module with respect to the generalized inner product \([x,y]\) such that \(N(x)^2= [x,x]\), \(\forall x\in X\).
0 references
Jordan-von Neumann theorem
0 references
parallelogram identity
0 references
inner product space
0 references
proper \(H^*\)-algebras
0 references
left module
0 references
Saworotnow's pre-Hilbert module
0 references
generalized inner product
0 references
0 references