Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space (Q1912669)

From MaRDI portal





scientific article; zbMATH DE number 878106
Language Label Description Also known as
English
Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space
scientific article; zbMATH DE number 878106

    Statements

    Jordan-von Neumann theorem for Saworotnow's generalized Hilbert space (English)
    0 references
    0 references
    7 June 1998
    0 references
    The Jordan-von Neumann theorem proved in 1935 says that a normed space \(X\) for which the parallelogram identity holds \[ |x+y|^2+|x-y|^2= 2|x|^2+2|y|^2, \qquad \forall x,y\in X \] can be made into an inner product space \((X,\langle ,\rangle)\) with \(\langle x,x\rangle=|x|^2\). In this paper the author works with proper \(H^*\)-algebras \(A\). For a left module \(X\) over \(A\) he defines a generalized normed space \((X,N)\), where \(N:X\to A\) is a norm-like mapping. The main theorem says that if \((X,N)\) is a normed \(A\)-module over \(A\), then \(N\) satisfies the parallelogram identity if and only if \(X\) is a Saworotnow's pre-Hilbert module with respect to the generalized inner product \([x,y]\) such that \(N(x)^2= [x,x]\), \(\forall x\in X\).
    0 references
    Jordan-von Neumann theorem
    0 references
    parallelogram identity
    0 references
    inner product space
    0 references
    proper \(H^*\)-algebras
    0 references
    left module
    0 references
    Saworotnow's pre-Hilbert module
    0 references
    generalized inner product
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers