Rate of divergence of some integrals (Q1916618)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Rate of divergence of some integrals |
scientific article; zbMATH DE number 898926
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Rate of divergence of some integrals |
scientific article; zbMATH DE number 898926 |
Statements
Rate of divergence of some integrals (English)
0 references
3 December 1996
0 references
Let \[ M(x)= \sum_{n\leq x} \mu (n), \qquad \Psi (x)= \sum_{n\leq x} \Lambda (n), \qquad B(x)= \sum_{mn\leq x} {\textstyle {1\over m}} \mu(m), \] where \(\mu (n)\) is the Möbius function and \(\Lambda (n)\) the Mangoldt function. The authors state a general Tauberian theorem and derive from it \[ \int^x_1 (\Psi (t) -t)^2 t^{-2} dt\geq c_1\log x, \quad \int^x_1 M^2 (t) t^{-2} dt\geq c_2 \log x, \quad \int^x_1 B^2 (t) t^{-2} dt\geq c_3 \log x. \]
0 references
asymptotic results
0 references
Möbius function
0 references
Mangoldt function
0 references
Tauberian theorem
0 references