Perturbation of Dirichlet forms by measures (Q1917786)

From MaRDI portal





scientific article; zbMATH DE number 903383
Language Label Description Also known as
English
Perturbation of Dirichlet forms by measures
scientific article; zbMATH DE number 903383

    Statements

    Perturbation of Dirichlet forms by measures (English)
    0 references
    0 references
    19 May 1997
    0 references
    This paper studies the perturbation of Dirichlet forms \({\mathfrak h}\) by measures \(\mu\). In this paper, the authors defined the perturbed form \({\mathfrak h}-\mu_-+ \mu_+\) for \(\mu_-\) in a suitable Kato class and \(\mu_+\) absolutely continuous with respect to the capacity. The main results of the paper are: (1) if the unperturbed semigroup has \(L_p\)-\(L_q\)-smoothing properties then the perturbed semigroup also has the properties; and (2) if the unperturbed semigroup is holomorphic in \(L_1\) then, for a larger class of measures \(\mu\), the perturbed semigroup also has the same property.
    0 references
    0 references
    capacity
    0 references
    smooth measures
    0 references
    perturbation of Dirichlet forms
    0 references
    Kato class
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers