Homoclinic orbits for Lagrangian systems (Q1917818)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Homoclinic orbits for Lagrangian systems |
scientific article; zbMATH DE number 903454
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Homoclinic orbits for Lagrangian systems |
scientific article; zbMATH DE number 903454 |
Statements
Homoclinic orbits for Lagrangian systems (English)
0 references
22 January 1997
0 references
The Lagrangian system \[ {d \over dt} \left( {\partial L(t,x,y)\over \partial y} \right) - {\partial L(t,x,y) \over \partial x} = 0 \tag{LS} \] with \(L(t, x, y) = {1 \over 2} \sum^N_{i,j = 1} a_{ij} (x) y_i y_j - V(t,x)\), where \(x, y \in \mathbb{R}^N\), is considered. The following assumptions are made: (1) \(a(x) = \{a_{ij} (x)\}\) is a positive definite symmetric \(C^2\) matrix. (2) The potential \(V(t,x)\) is globally superquadratic in \(x\) and \(T\)-periodic in \(t\). The existence of at least two homoclinic orbits for the Lagrangian system (LS) is proved. The concentration-compactness lemma and minimax argument are used to prove the existences.
0 references
superquadratic growth
0 references
PS sequence
0 references
critical point
0 references
homoclinic orbits
0 references
Lagrangian system
0 references
0.96318126
0 references
0.9596305
0 references
0.9584133
0 references
0.9494732
0 references
0.9470597
0 references
0.9428951
0 references
0.9428951
0 references
0.9380107
0 references