Nilpotence for modules over the mod 2 Steenrod algebra. I (Q1919621)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nilpotence for modules over the mod 2 Steenrod algebra. I |
scientific article; zbMATH DE number 908686
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nilpotence for modules over the mod 2 Steenrod algebra. I |
scientific article; zbMATH DE number 908686 |
Statements
Nilpotence for modules over the mod 2 Steenrod algebra. I (English)
0 references
13 November 1997
0 references
Let \(A\) be the mod 2 Steenrod algebra and let \(M\) be a finite \(A\)-module. This paper characterizes the nilpotent elements of \(\text{Ext}^{**}_{A}(M,M)\) as those elements \(z\) such that for all elementary sub-Hopf algebras \(E\) of \(A\) the images \(i_{E}(z)\) are nilpotent.
0 references
Hopf algebra
0 references
Yoneda composition
0 references
nilpotence
0 references
Steenrod algebra
0 references