Gaussian measures on linear spaces (Q1920991)

From MaRDI portal





scientific article; zbMATH DE number 914126
Language Label Description Also known as
English
Gaussian measures on linear spaces
scientific article; zbMATH DE number 914126

    Statements

    Gaussian measures on linear spaces (English)
    0 references
    17 February 1998
    0 references
    The article under review is an impressive survey of the modern theory of Gaussian measures on locally convex spaces with a particular attention to Radon-Gaussian measures. Many classical results of the linear theory are presented with detailed proofs. In particular, the author discusses measurable linear functionals and operators, zero-one laws, equivalence/singularity, etc. One of the chapters is devoted to nonlinear problems. Gaussian-Sobolev classes, elements of the Malliavin Calculus, nonlinear transformations, and Gaussian capacities are discussed also (however, mostly without proofs). The survey contains an extensive bibliography (about 600 items). A more detailed exposition of the same subject is given in the author's recent book ``Gaussian measures'', Moscow: Nauka, Fizmatlit (1997).
    0 references
    Radon measures
    0 references
    Gaussian measures
    0 references
    locally convex spaces
    0 references
    Malliavin Calculus
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references