On the Bergman invariant and curvatures of the Bergman metric (Q1922056)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Bergman invariant and curvatures of the Bergman metric |
scientific article; zbMATH DE number 926192
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Bergman invariant and curvatures of the Bergman metric |
scientific article; zbMATH DE number 926192 |
Statements
On the Bergman invariant and curvatures of the Bergman metric (English)
0 references
11 February 1997
0 references
Let \(A^2(\Omega)\) be the Bergman space on a bounded domain \(\Omega \subseteq \mathbb{C}^n\). If \(\{\varphi_j\}\) is a complete orthonormal system for \(A^2\) then set \[ K(z, \zeta) = \sum^\infty_{j = 1} \varphi_j (z) \overline {\varphi_j (\zeta)}. \] This is the Bergman kernel. We set \(K_\Omega (z) = K(z,z)\). Now define the (infinitesimal) Bergman metric by \[ g_{\alpha \overline \beta} (z) = {\partial^2 \log K_\Omega (z) \over \partial z_\alpha \partial \overline {z_\beta}}. \] We let \(G_\Omega (z)\) denote the matrix \((g_{\alpha \overline \beta})\). The Bergman canonical invariant is defined to be \(J_\Omega (z) = {\text{det} G_\Omega (z) \over K_\Omega (z)}\). The Ricci curvature tensor \(R_\Omega = \sum R_{\alpha \overline \beta} dz_\alpha d \overline {z_\beta}\) is defined by \[ R_{\alpha \overline \beta} = - {\partial^2 \log \text{det} G_\Omega \over \partial z_\alpha \partial \overline {z_\beta}}. \] Both \(J_\Omega\) and \( R_\Omega\) are invariant under biholomorphic mappings. The two invariants are closely related. The authors study the boundary behavior of these invariants on some natural classes of weakly pseudoconvex domains. The method used is to study certain minimal integrals.
0 references
Bergman invariant
0 references
extendible domains
0 references
Ricci curvature
0 references
Bergman metric
0 references