\(L\)-Correspondences: The inclusion \(L^ p (\mu, X)\subset L^ q (\upsilon, Y)\) (Q1922848)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L\)-Correspondences: The inclusion \(L^ p (\mu, X)\subset L^ q (\upsilon, Y)\) |
scientific article; zbMATH DE number 930048
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L\)-Correspondences: The inclusion \(L^ p (\mu, X)\subset L^ q (\upsilon, Y)\) |
scientific article; zbMATH DE number 930048 |
Statements
\(L\)-Correspondences: The inclusion \(L^ p (\mu, X)\subset L^ q (\upsilon, Y)\) (English)
0 references
19 November 1996
0 references
Summary: In order to study inclusions of the type \(L^p(\mu,X)\subset L^q(\upsilon,Y)\), we introduce the notion of an \(L\)-correspondence. After proving some basic theorems, we give characterizations of some types of \(L\)-correspondences and offer a conjecture that is similar to an equimeasurability theorem.
0 references
Lebesgue-Bochner spaces
0 references
measurable point mapping
0 references
inclusions
0 references
\(L\)-correspondence
0 references
equimeasurability theorem
0 references