A family of multiply extended grids (Q1923782)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A family of multiply extended grids |
scientific article; zbMATH DE number 934040
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A family of multiply extended grids |
scientific article; zbMATH DE number 934040 |
Statements
A family of multiply extended grids (English)
0 references
29 June 1997
0 references
The paper deals with an infinite family \((\Gamma_n)^\infty_{n=5}\) of finite connected graphs \(\Gamma_n\) that are multiple extensions of the well-known ``extended grid,'' a locally 4-by-4 grid graph discovered by \textit{A. Blokhuis} and \textit{A. E. Brouwer} [J. Graph Theory 13, No. 2, 229-244 (1989; Zbl 0722.05054)]. For \(n>5\), the graphs \(\Gamma_n\) are locally \(\Gamma_{n-1}\) and have the following properties: the automorphism group \(G(n)\) of \(\Gamma_n\) acts transitively on the maximal cliques (which are of order \(n\)), and the stabilizer of some \(n\)-clique \(\pi\) of \(\Gamma_n\) induces \(\Sigma_n\) on the vertices of \(\pi\). The clique complex of \(\Gamma_n\) is shown to be simply connected.
0 references
flag-transitive geometry
0 references
locally grid graph
0 references
extended grid
0 references
automorphism group
0 references
maximal cliques
0 references
stabilizer
0 references
clique complex
0 references